Oceanic Variables extracted from Along-Track Interferometric SAR Data
نویسندگان
چکیده
The Synthetic Aperture Radar (SAR) data are considered to contain the greatest amount of information among various microwave techniques developed for measuring ocean variables from aircraft or satellites. They have the potential of measuring wavelength, wave direction and wave height of the ocean waves. But, it is difficult to retrieve significant ocean wave heights and surface current from conventional SAR data, since the imaging mechanism of ocean waves by a SAR is determined by the three basic modulation processes arise through the tilt modulation, hydrodynamic modulation and velocity bunching which are poorly known functions. Along-Track Interferometric (ATI) SAR systems can directly detect the Doppler shift associated with each pixel of a SAR image and have been used to estimate wave fields and surface currents. However, the Doppler shift is not simply proportional to the component of the mean surface current. It includes also contributions associated with the phase velocity of the Bragg waves and orbital motions of all ocean waves that are longer than Bragg waves. In this paper, we have developed a new method for extracting the surface current vector using multiple-frequency (L& C-band) ATI SAR data, and have generated surface wave height information.
منابع مشابه
Demonstration of Current Measurements from Space by Along-Track SAR Interferometry with SRTM Data
We present one of the first studies in which interferometric synthetic aperture radar (InSAR) data from the Shuttle Radar Topography Mission (SRTM) are analyzed with regard to the detectability of ocean surface current variations. The InSAR system of SRTM was designed for high-resolution topographic mapping, using two SAR antennas on a Space Shuttle with a cross-track separation of 60 m. For te...
متن کاملGeometric, Radiometric, Polarimetric and Along-Track Interfer- ometric Calibration of the new F-SAR system of DLR in X-Band
Since November 2006, DLR operates F-SAR a new airborne SAR sensor beside its experimental airborne SAR sensor E-SAR. F-SAR is a totally new development utilizing most modern hardware. It is presently operated in X-band and has been supplemented recently being fully polarimetric. F-SAR already accomplished several flights and acquired SAR data in different operation modes, amongst others in alon...
متن کاملRemote Sensing of Ocean Waves and Currents Using AIRSAR Along-Track Interferometry (ATI)
The phase information in along-track interferometry (ATI) SAR images is a measure of the Doppler shift of the backscattered signal and thus of the line-of-sight velocity of the scatterers. This interferometric velocity is the sum of the orbital motion of water particles from the swell, phase velocities of the Bragg waves, and ocean surface currents. While the advent of ATI SAR provided us with ...
متن کاملMoving target detection in foliage using along track monopulse synthetic aperture radar imaging
This paper presents a method for detecting moving targets embedded in foliage from the monostatic and bistatic synthetic aperture radar (SAR) data obtained via two airborne radars. The two radars, which are mounted on the same aircraft, have different coordinates in the along track (cross-range) domain. However, unlike the interferometric SAR systems used for topographic mapping, the two radars...
متن کاملMultichannel Along-Track Interferometric SAR Systems: Moving Targets Detection and Velocity Estimation
Along-track interferometric synthetic aperture radar (AT-InSAR) systems are used to estimate the radial velocity of targets moving on the ground, starting from the interferometric phases, obtained by the combinations of two complex SAR images acquired by two antennas spatially separated along the platform moving direction. Since the radial velocity estimation obtained from a single-phase interf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003